idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.02.2013 10:47

Genregulation - Die Übersetzer des genetischen Codes 2.0

Luise Dirscherl Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Unsere Erbanlagen sind in den Genen festgelegt - aber welche Informationen umgesetzt werden, legen chemische Modifikationen der DNA fest. Eine neue Studie zeigt, welche Proteine diesen erweiterten genetischen Code lesen und weitergeben.

    Die Eigenschaften aller Organismen sind in den Genen festgelegt - die Abfolge der vier Nukleinbasen Adenin, Guanin, Thymin und Cytosin in der DNA codiert in allen Zellen den Bauplan des Lebens. Aber um zu entscheiden, welches Gen wann aktiv ist, benötigt die Zelle noch eine zweite Informationsebene, die über den reinen Gencode hinaus reicht: Nur so können unterschiedliche Zelltypen spezifisch jeweils die Gene aktivieren, die für ihre Funktion wichtig sind.

    Wissenschaftler um Professor Thomas Carell vom Department Chemie der LMU konnten nun gemeinsam mit der Gruppe von Professor Michiel Vermeulen (Universität Utrecht, Niederlande) zeigen, wie die Genregulation auf dieser zweiten Ebene funktioniert. Eine wesentliche Rolle spielen dabei vier neue DNA-Basen: Das methylierte Cytosin-Derivat 5-Methylcytosin (mC) sowie drei erst in den letzten Jahren entdeckte Basen, die durch Oxidation aus mC hervorgehen: 5-Hydroxymethylcytosin (hmC), das 2011 von Carells Gruppe entdeckte 5’-Formylcytosin (fC) sowie 5’-Carboxycytosin (caC).

    Die Methylierung der DNA - also das Übertragen einer Methylgruppe auf Nukleinbasen - spielt bei der Stilllegung von Genen eine wichtige Rolle. Seit 2009 ist bekannt, dass mC die Genaktivität vermindert, die Funktion der anderen Cytosin-Derivate dagegen ist noch nicht vollständig geklärt. In enger Zusammenarbeit mit dem LMU-Biologen Professor Heinrich Leonhardt gelang es den Wissenschaftlern nun zum ersten Mal, mithilfe ausgefeilter Analysen die Proteine zu identifizieren, die in Stammzellen, Nervenzellen und neuralen Vorläuferzellen der Maus spezifisch an die neuen Basen binden - und so Rückschlüsse auf deren Funktion erlauben.

    Die Studie zeigte, dass die neuen Basen sehr spezifisch mit bestimmten Proteinen interagieren, und es nur wenige Überlappungen gibt - jede Oxidationsstufe also spezifische Funktionen übernimmt. Rekrutiert werden insbesondere bestimmte Transkriptionsregulatoren, aber auch zahlreiche DNA-Reparaturproteine. "Die DNA-Reparaturproteine erkennen die fC und caC Basen und schneiden sie heraus, um sie am Ende durch unmethyliertes Cytosin zu ersetzen. Somit scheinen DNA-Reparaturmechanismen auch bei der Genaktivierung eine wichtige Rolle zu spielen", sagt Carell.

    Die Wissenschaftler nehmen an, dass die neuen Basen insbesondere bei der Entwicklung embryonaler Stammzellen zu spezialisierten adulten Zellen eine wichtige Rolle spielen. Sie ermöglichen Genen auch, zwischen aktiven und inaktiven Phasen zu wechseln - dies ist insbesondere für Nervenzellen essentiell, die sich zwar nicht mehr teilen, aber trotzdem auf Umwelteinflüsse reagieren müssen. Welche Proteine die Botschaft der neuen Basen lesen und weitergeben, ist somit von großer Bedeutung für das Verständnis der zellulären Mechanismen.

    Publikation:
    Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives
    Cornelia G. Spruijt, Felix Gnerlich, Arne H. Smits, Toni Pfaffeneder, Pascal W.T.C. Jansen, Christina Bauer, Martin Münzel, Mirko Wagner, Markus Müller, Fariha Khan, H. Christian Eberl, Anneloes Mensinga, Arie B. Brinkman, Konstantin Lephikov, Udo Müller, Jörn Walter, Rolf Boelens, Hugo van Ingen, Heinrich Leonhardt, Thomas Carell, and Michiel Vermeulen
    Cell 2013
    http://dx.doi.org/10.1016/j.cell.2013.02.004

    Kontakt:
    Prof. Dr. Thomas Carell
    Chair for Organic Chemistry
    Department of Chemistry, LMU München
    Tel: +49 (0)89 2180-77750
    E-Mail: Thomas.Carell@cup.uni-muenchen.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).