idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.01.2008 17:39

Gedanken in die Tat umsetzen

Katrin Weigmann Press office
Bernstein Centers for Computational Neuroscience

    Wissenschaftler aus Freiburg entwickeln neue Verfahren zur Neuroprothetik

    Jede Bewegung, die wir ausführen - jeder Griff und jeder Schritt - hat ihren Ursprung im Gehirn. Die Signale des Gehirns auch zur Steuerung von Prothesen oder zur Bedienung eines Computers zu nutzen, um somit die Grundlagen für die Entwicklung einer Prothesenansteuerung für schwerstgelähmte Patienten zu schaffen, ist das Ziel von Carsten Mehring und seiner Arbeitsgruppe am Bernstein Zentrum für Computational Neuroscience und am Institut für Biologie I der Universität Freiburg. Gemeinsam mit Kollegen vom Universitätsklinikum Freiburg konnten die Wissenschaftler zeigen, dass sich mit Hilfe von auf die Hirnoberfläche aufgesetzten Elektroden kontinuierliche Armbewegungen vorhersagen lassen. Die Arbeit wird in der Januar-Ausgabe der Fachzeitschrift "Journal of Neuroscience Methods" publiziert.

    Die Wissenschaftler um Mehring nutzten zur Messung elektrischer Signale des Gehirns ein so genanntes "semi-invasives" Verfahren, die Elektrocorticographie (ECoG). "Wir suchen damit einen optimalen Kompromiss zwischen voll-invasiven und nicht-invasiven Methoden", erklärt Mehring. Bei nicht-invasiven Methoden wie dem EEG werden Elektroden auf der Kopfhaut angebracht. Das neuronale Signal wird auf der Schädeldecke gemessen und ist von entsprechend geringer räumlicher Auflösung. Bei voll-invasiven Methoden werden die Elektroden wenige Millimeter tief in das Gehirn implantiert, so dass die Aktivität einzelner Neurone oder Gruppen von Neuronen registriert werden kann. Das Signal ist sehr viel genauer und es reicht aus, um komplexe Bewegungen zu steuern. Erste klinische Studien an schwerstgelähmten Patienten wurden mit dieser Methode bereits erfolgreich durchgeführt. Noch lässt sich allerdings kaum sagen, inwiefern das Gehirn durch die implantierten Elektroden verletzt werden kann oder wie stabil die so gemessenen Signale über längere Zeit sein werden.

    Beim ECoG werden die Elektroden direkt auf der Gehirnoberfläche implantiert und dringen nicht in das Gehirngewebe ein. Sie messen Spannungsveränderungen an der Hirnoberfläche, die von großen Gruppen von Neuronen hervorgerufen werden. Diese Methode ist weniger invasiv und die gemessenen Signale sind voraussichtlich über längere Zeit stabil. "Wir möchten überprüfen, ob sich diese Methode zur Steuerung von Bewegungen eignet und somit eine mögliche Alternative zu voll-invasive Methoden darstellt", erklärt Mehring und fährt fort: "Unsere Ergebnisse geben uns die Hoffnung, dass das funktionieren könnte".

    Seine Untersuchungen führte Mehring an Epilepsiepatienten durch, denen zur Vorbereitung auf eine Gehirnoperation bereits Elektroden unter die Schädeldecke implantiert waren. Ihre Hirnaktivität wurde aufgezeichnet, während sie durch Betätigung eines Handgriffs mit einem Cursor einen Zielpunkt auf einem Bildschirm ansteuerten. Mit Hilfe mathematischer Algorithmen ist es den Wissenschaftlern gelungen, aus diesen Messungen Hirnsignale zu extrahieren, die mit der Cursorbewegung korrelierten und mit denen eine kontinuierliche Rekonstruktion der Bewegung möglich war.

    In einem nächsten Schritt möchten Mehring und seine Kollegen nun untersuchen, wie gut sich die Strategie nutzen lässt, um nur mit Hilfe der neuronalen Aktivität einen Cursor auf dem Bildschirm zu steuern, ohne dass der Proband dabei den Arm bewegt. "Vorherige Studien zeigen, dass sich die Rekonstruktion der Bewegung aus den Hirnsignalen auf diese Weise noch verbessern läßt, weil der Proband lernen kann seine Hirnaktivität an die Cursorsteuerung anzupassen", so Mehring. "Es besteht die Hoffnung, dass, basierend auf solchen Methoden, in Zukunft eine Prothesenansteuerung oder ein Kommunikationsmittel für schwerstgelähmte Patienten entwickelt werden kann. Bis zur praktischen Anwendung solcher Geräte am Patienten müssen allerdings noch viele wissenschaftlich-technische Probleme gelöst werden".

    Originalveröffentlichung:
    Tobias Pistohl, Tonio Ball, Andreas Schulze-Bonhage, Ad Aertsen, Carsten Mehring (2008). Prediction of arm movement trajectories from ECoG-recordings in humans. Journal of Neuroscience Methods, 2008 Jan 15 167/1 pp. 105-114.
    doi: 10.1016/j.jneumeth.2007.10.001

    Kontakt:
    Dr. Carsten Mehring
    Institut für Biologie I &
    Bernsteinzentrum für Computational Neuroscience
    Albert-Ludwigs-Universität Freiburg
    Hauptstr.1, 79104 Freiburg
    Tel.: ++49-(0)761-2032543
    E-mail: mehring@biologie.uni-freiburg.de

    Tobias Pistohl
    Institut für Biologie I &
    Bernsteinzentrum für Computational Neuroscience
    Albert-Ludwigs-Universität Freiburg
    Hauptstr.1, 79104 Freiburg
    Tel.: ++49-(0)761-2032580
    E-mail: pistohl@biologie.uni-freiburg.de

    Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.


    Weitere Informationen:

    http://www.bmi.uni-freiburg.de/
    http://www.bernstein-zentren.de/


    Bilder

    Links: Beispiel eines Versuchsablaufes. Probanden bewegten mit der Hand einen Cursor (grün) mit welchem sie eine Reihe von Zielpunkten (gelb) auf einem Bildschirm ansteuerten. Die Verlaufskurve des Cursors sowie die in der Vergangenheit durchlaufenen Zielpunktesind  für die Probanden nicht sichtbar. Rechts: Die Cursorbewegung entlang der X-Achse (oben) und der Y-Achse (unten) bei einem solchen Experiment (grüne Kurve). Im Vergleich dazu die Rekonstruktion der Bewegung aus der Gehirnaktivität (rote Kurve).
    Links: Beispiel eines Versuchsablaufes. Probanden bewegten mit der Hand einen Cursor (grün) mit welc ...
    Modifizierter Nachdruck aus Tobias Pistohl, Tonio Ball, Andreas Schulze-Bonhage, Ad Aertsen, Carsten Mehring. Journal of Neuroscience Methods, 2008 Jan 15 167/1 pp. 105-114
    None


    Merkmale dieser Pressemitteilung:
    Biologie, Ernährung / Gesundheit / Pflege, Informationstechnik, Mathematik, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Links: Beispiel eines Versuchsablaufes. Probanden bewegten mit der Hand einen Cursor (grün) mit welchem sie eine Reihe von Zielpunkten (gelb) auf einem Bildschirm ansteuerten. Die Verlaufskurve des Cursors sowie die in der Vergangenheit durchlaufenen Zielpunktesind für die Probanden nicht sichtbar. Rechts: Die Cursorbewegung entlang der X-Achse (oben) und der Y-Achse (unten) bei einem solchen Experiment (grüne Kurve). Im Vergleich dazu die Rekonstruktion der Bewegung aus der Gehirnaktivität (rote Kurve).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).