idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/13/2013 08:46

Einfache Struktur komplexer Kerne - Laserspektroskopie an Cadmium-Isotopen bestätigt Schalenmodell

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Atomkerne sind so komplexe Quantensysteme, dass auch nach über 70 Jahren Forschung ihre Struktur noch nicht in allen Details verstanden ist. Eine europäische Physikergruppe um Deyan Yordanov vom MPI für Kernphysik hat nun mit laserspektroskopischen Messungen an Cadmium-Isotopen bei ISOLDE-CERN ein grundlegendes Modell der Kernstruktur und ein überraschend einfaches Prinzip bestätigt, das allerdings nur unter bestimmten Bedingungen erwartet worden war.

    Magnetische Dipol- und elektrische Quadrupolmomente sind fundamentale Eigenschaften von Quantensystemen, die sich für anspruchsvolle Tests von Modellen besonders eignen. So führten verfügbare Daten kernmagnetischer Momente in den 1940er Jahren zur Entwicklung des Schalenmodells der Kernstruktur und später Kernquadrupolmomente zum Konzept deformierter Kerne.

    Die Natur stellt zwar einige hundert stabile Kerne zur Verfügung, aber diese verteilen sich über fast das gesamte Periodensystem. Besser geeignet für präzise Messungen sind viele unterschiedlich schwere Kerne ein- und desselben Elements, genannt Isotope. Sie besitzen die gleiche Anzahl von Protonen (die das chemische Element bestimmt), aber unterschiedlich viele Neutronen. In modernen Beschleunigeranlagen können durch Beschuss schwerer Kerne mit Protonen ganze Serien von Isotopen künstlich hergestellt werden. Dabei ist es aber eine Herausforderung, das gewünschte Isotop aus den rund 1000 verschiedenen Bruchstücken herauszufischen.

    An der ISOLDE-Anlage des CERN haben sich die Physiker einiger Tricks bedient: Mit hochenergetischen Protonen beschossen sie zunächst Wolfram, um mittel- und niedrigenergetische Neutronen in großer Zahl zu produzieren, und damit Urankerne gespalten. Auf diese Weise entstehen ‚nur‘ einige hundert verschiedene, meist – wie gewünscht – neutronenreiche Kerne. Aus dieser Mischung verschiedener Elemente haben die Wissenschaftler die flüchtigen Cadmium-Atome bei kontrollierter Temperatur über ein Quarzrohr selektiv abgedampft und zum Experiment geführt, während die restlichen Nuklide am Target zurückblieben und dort zerfielen.

    Die Cadmium-Atome wurden anschließend mit einem Laser ionisiert, beschleunigt und nach ihrer Masse getrennt. Der aus jeweils nur einem Isotop bestehende Ionenstrahl wurde in eine sogenannte Paulfalle injiziert, kurz gespeichert und dann als komprimiertes Bündel emittiert. Damit unterdrückten die Forscher den Untergrund und erhöhten die Empfindlichkeit der folgenden Messungen mittels hochauflösender Laserspektroskopie. Zur Anregung der Cadmium-Ionen im tiefen UV kam ein frequenzvervierfachter Titan:Saphir-Laser zum Einsatz. Die Spektren zeigen für jedes Isotop eine charakteristische Hyperfeinstruktur, aus der sich die Kerndipol- und Quadrupolmomente sowie der quantenmechanische Kernzustand bestimmen lassen.

    Bemerkenswerterweise nehmen die Quadrupolmomente der Cadmium-Isotope 111 bis 129 mit ungerader Massen- und damit auch Neutronenzahl in einem bestimmten Kernzustand linear mit der Neutronenzahl zu. Dieser Kernzustand kann im quantenmechanischen Schalenmodell der Kernstruktur als ein ungepaartes Neutron in einem Orbital mit hohem Bahndrehimpuls betrachtet werden. Und dieses ungepaarte Neutron verhält sich in allen Kernen gleichartig. Ein derartiges Verhalten war theoretisch vorhergesagt, allerdings nur für Kerne, in denen entweder die Neutronen oder die Protonen eine abgeschlossene Schale bilden. In den verschiedenen Cadmium-Isotopen, deren Schalen alle nicht abgeschlossen sind, ist diese einfache Konfiguration aber offensichtlich erhalten. Somit bestätigen die Ergebnisse das Schalenmodell und das Konzept der Paarung von Protonen und Neutronen, das für eine einfache und gleichbleibende Struktur in einer langen Reihe von Isotopen sorgt.

    Originalpublikation:
    Spins, Electromagnetic Moments, and Isomers of 107-129Cd
    D. T. Yordanov, D. L. Balabanski, J. Bieron, M. L. Bissell, K. Blaum, I. Budincevic, S. Fritzsche, N. Frömmgen, G. Georgiev, Ch. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, W. Nörtershäuser, J. Papuga, S. Schmidt
    Phys. Rev. Lett. 110, 192501 (2013), DOI:10.1103/PhysRevLett.110.192501 http://link.aps.org/doi/10.1103/PhysRevLett.110.192501

    Viewpoint:
    Simple Structure in Complex Nuclei
    J. Wood, Physics 6, 52 (2013), DOI: 10.1103/Physics.6.52 http://physics.aps.org/articles/v6/52

    Kontakt:

    Prof. Dr. Klaus Blaum
    MPI für Kernphysik, Heidelberg
    E-Mail: klaus.blaum [AT] mpi-hd.mpg.de
    Tel.: +49 6221 516-850

    Prof. Dr. Wilfried Nörterhäuser
    Technische Universität Darmstadt
    E-Mail: wnoertershaeuser [AT] ikp.tu-darmstadt.de
    Tel.: +49 6151 16-3116


    Images

    Das UV-Licht zur Anregung der Cadmium-Ionen wird durch zweimalige Frequenzverdopplung eines auf 860 nm abgestimmten Titan:Saphir-Lasers erzeugt.
    Das UV-Licht zur Anregung der Cadmium-Ionen wird durch zweimalige Frequenzverdopplung eines auf 860 ...
    Grafik: MPI für Kernphysik
    None

    Die Quadrupolmomente (Q; mb = millibarn = 10^-27 cm^2) von Cadmium-Isotopen mit ungerader Neutronenzahl im Kernzustand mit Spin 11/2 steigen linear an.
    Die Quadrupolmomente (Q; mb = millibarn = 10^-27 cm^2) von Cadmium-Isotopen mit ungerader Neutronenz ...
    Grafik: MPI für Kernphysik
    None


    Criteria of this press release:
    Journalists, Students
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Das UV-Licht zur Anregung der Cadmium-Ionen wird durch zweimalige Frequenzverdopplung eines auf 860 nm abgestimmten Titan:Saphir-Lasers erzeugt.


    For download

    x

    Die Quadrupolmomente (Q; mb = millibarn = 10^-27 cm^2) von Cadmium-Isotopen mit ungerader Neutronenzahl im Kernzustand mit Spin 11/2 steigen linear an.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).