idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/24/2014 14:50

Mit Antineutrinos Kernreaktoren überwachen

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Bei der Überwachung von Kernreaktoren ist die Internationale Atomenergiebehörde (IAEA) in wichtigen Fragen auf die Angaben der Betreiber angewiesen. In Zukunft könnten Antineutrino-Detektoren eine unabhängige Möglichkeit der Überprüfung liefern. Doch bisher fehlte das Antineutrino-Spektrum der Spaltprodukte von Uran-238. Physiker der Technischen Universität München (TUM) haben diese Lücke nun mit Hilfe von schnellen Neutronen aus der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) geschlossen.

    Bei der Spaltung von Kernbrennstoffen wie Plutonium oder Uran werden neben Neutronen auch Antineutrinos frei. Diese sind ebenfalls elektrisch neutral, aber nicht sehr reaktionsfreudig, weshalb sie sich nur mit riesigen Detektoren nachweisen lassen. Inzwischen werden jedoch Detektoren entwickelt, die nur noch die Größe eines Kubikmeters haben. Sie können Antineutrinos aus dem Reaktorkern messen – eine Methode, an der die IAEA sehr interessiert ist.

    Prototypen dieser Detektoren existieren bereits und nehmen in Abständen von etwa zehn Metern zu Reaktoren Daten auf. Aus der Analyse von Energie und Rate der Antineutrinos lassen sich Änderungen in der Zusammensetzung der Kernbrennstoffe im Reaktor ermitteln - wie etwa das Entfernen von kernwaffenfähigem Plutonium-239. Die IAEA wäre damit nicht mehr auf die Aussagen der Reaktorbetreiber angewiesen.

    Genaues Antineutrino-Spektrum von Uran-238 bestimmt

    Bereits in den 1980er-Jahren wurden die Antineutrino-Spektren von drei der vier Haupt-Kernbrennstoffe, Uran-235, Plutonium-239 und -241 bestimmt. Bisher fehlte jedoch das genaue Antineutrino-Spektrum des vierten verwendeten Kernbrennstoffes Uran-238, der etwa zehn Prozent des gesamten Antineutrino-Flusses ausmacht. Er war nur durch ungenaue theoretische Berechnungen abgeschätzt worden und beschränkte somit die Präzision der Antineutrino-Vorhersagen.

    Dr. Nils Haag am Lehrstuhl für Experimentelle Astroteilchenphysik der TU München entwickelte nun am FRM II einen Messaufbau, mit dem er das fehlende Spektrum von Uran-238 bestimmen konnte. „Ich benötigte einen hohen Fluss von schnellen Neutronen, um das Uran-238 spalten zu können“, sagt der Physiker. Seinen Versuchsaufbau stellte er deshalb an die Radiographie- und Tomographiestation NECTAR des FRM II, die schnelle Neutronen zur Verfügung stellt.

    Ein zweiter Detektor eliminiert unerwünschte Messsignale

    In einer Folie aus Uran-238 erzeugten die Neutronen Kernspaltungen. Die radioaktiven Zerfallsprodukte emittierten in der Folge Elektronen und Antineutrinos. Die Elektronen wurden mit einem Szintillator untersucht – einem Kunststoffblock, der die kinetische Energie der Elektronen in Licht umwandelt. Dieses übersetzte ein Photomultiplier in elektrische Signale.

    Bei den Kernzerfällen entsteht aber auch Gammastrahlung, die im Szintillator unerwünschte Messsignale erzeugt. Deswegen platzierte Haag einen zweiten Detektor direkt vor dem Szintillator: eine sogenannte Vieldrahtkammer. Da in diesem Gasdetektor nur geladene Teilchen wie Elektronen ein Signal auslösen, konnte Haag den Anteil der Gammastrahlung bestimmen. Aus der somit Untergrund-freien Messung der Elektronen leitete Haag das Antineutrino-Spektrum ab.

    Methode erlaubt bessere Überwachung von Kernreaktoren

    Die Messung des Antineutrino-Spektrums kann dazu verwendet werden, den Status, die Leistung und sogar die Zusammensetzung von Reaktorkernen zu überwachen. „Unsere Ergebnisse erlauben es nun, mit signifikant höherer Genauigkeit vorauszuberechnen, welches Antineutrino-Spektrum ein Reaktor mit der vom Betreiber angegebenem Brennstoffzusammensetzung haben müsste“, erklärt Dr. Nils Haag. „Abweichungen zwischen dem erwarteten Signal des Reaktors und den Messdaten der Antineutrino-Detektoren können damit aufgedeckt werden.“

    Eingebettet ist die Entwicklung der Methode in Grundlagenforschung zum Phänomen der „sterilen“ Antineutrinos. Aus dem Vergleich bisheriger Messungen und Vorhersagen von Reaktor-Antineutrino-Spektren gab es nämlich Hinweise darauf, dass einige Antineutrinos kurz nach ihrer Produktion „steril“ werden. Sie könnten dann nicht mehr mit Materie in Wechselwirkung treten. Ein besseres Verständnis dieser Effekte würde unser Wissen über die elementaren physikalischen Prozesse erweitern.

    Die Arbeit wurde mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) und des DFG-Exzellenzclusters „Origin and Structure of the Universe“ der TUM gefördert.

    Publikation:

    Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238
    N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner
    Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501

    Kontakt:

    Dr. Nils Haag
    Physik-Department
    Lehrstuhl für experimentelle Physik und Astroteilchenphysik (E15)
    Technische Universität München
    James-Franck-Str. 1, 85748 Garching, Germany
    Tel.: +49 89 289 12524 – E-Mail: Nils.Haag@ph.tum.de


    More information:

    http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31486/ Pressemitteilung im Web
    http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.122501 Link zur Originalstudie
    http://www.e15.ph.tum.de/ Homepage des Lehrstuhls
    https://mediatum.ub.tum.de/?id=1207662#1207662 Hochauflösende Bilder zum Download


    Images

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, all interested persons
    Electrical engineering, Energy, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).